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SUMMARY

A method is developed for performing a local reduction of the governing physics for �uid problems
with domains that contain a combination of narrow and non-narrow regions, and the computational
accuracy and performance of the method are measured. In the narrow regions of the domain, where the
�uid is assumed to have no inertia and the domain height and curvature are assumed small, lubrication,
or Reynolds, theory is used locally to reduce the two-dimensional Navier–Stokes equations to the
one-dimensional Reynolds equation while retaining a high degree of accuracy in the overall solution.
The Reynolds equation is coupled to the governing momentum and mass equations of the non-narrow
region with boundary conditions on the mass and momentum �ux. The localized reduction technique,
termed ‘stitching,’ is demonstrated on Stokes �ow for various geometries of the hydrodynamic journal
bearing—a non-trivial test problem for which a known analytical solution is available. The computational
advantage of the coupled Stokes–Reynolds method is illustrated on an industrially applicable fully-
�ooded deformable-roll coating example. The examples in this paper are limited to two-dimensional
Stokes �ow, but extension to three-dimensional and Navier–Stokes �ow is possible. Copyright ? 2003
John Wiley & Sons, Ltd.
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1. INTRODUCTION

Early application of the Navier–Stokes (NS) equations to practical problems was limited
since the equations could be solved only through analytical means, and for problems that
were not axisymmetric and/or included the non-linear inertial terms, analytical solution was,
generally, not just di�cult, but impossible. Undeterred, researchers of the late 1800s used
either mathematical scaling or experimental observations to simplify the �uid momentum
equations. The most well-known assumptions were those posed by Reynolds in the 1880s
for liquid �ows in an annulus [1]. While studying liquid bearings, Reynolds recognized that
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the �uid �lms were (1) thin and of small curvature, (2) carried little or no inertia, and
(3) had no pressure change across their thickness. In conjunction with a mass balance, i.e.
the continuity equation, these assumptions are commonly known as lubrication, or Reynolds,
theory and served as the basis of analysis for most thin-�lm problems well into the last
century.
With the advent of the digital computer in the 1950s, research into numerical solution of

linear and nonlinear partial di�erential equations saw a dramatic explosion. Concurrently, the
�nite element method (FEM) was applied to the governing equations of solid structures, where
it demonstrated the ability to solve PDEs on arbitrarily shaped domains. Shortly thereafter,
the FEM made its way to the world of �uid mechanics and allowed researchers to extend
their studies to complex domains. Over time, the FEM has been used to solve countless �uid
problems described by the NS equations of motion. Due to the FEM’s robust nature, however,
the drive to solve the thin-�lm, or lubrication, equations has been mainly left as a �rst
approximation to the system dynamics. Thus, a dichotomy has arisen for �uid problems that
contain a domain with thin-�lm segments—one uses lubrication theory as a �rst, sometimes
crude approximation or resorts to a FEM solution of the full NS equations. Little e�ort has
been extended to take advantage of lubricated regions within a domain and use Reynolds
theory in conjunction with the FEM solution of the NS momentum equations.
The signi�cance of a coupled narrow and non-narrow domain is often lost since com-

putational resources are so abundant that one need not employ the thin-�lm approximation;
one can just go directly to the numerical solution of the NS equations. There is, however, a
growing and important class of problems where the thin �lm region presents a problem for
the FEM solution. Di�culty arises in moving boundary problems where a small fraction of
the overall domain is lubricated, but the lubricated region of the domain contains informa-
tion critical to the system dynamics; examples include industrial manufacturing processes like
roll coating [2, 3], biotransport in the human eye [4], and the mechanics of cardiovascular
valves [5]. Finite element codes that tackle these problems must overmesh the thin region to
determine the �ow �eld characteristics and track changes in the domain shape. The shape-
tracking problem arises frequently in coupled �uid-solid systems. Although not as common,
thin-�lm regions can also present di�culties when the domain must be modeled with three-
dimensional NS and a large fraction of the domain is highly lubricated, as happens with
micro�uidic channels, pumps, and reactors. Here, the majority of computational resources are
devoted to solving a very simple �ow �eld.
While little work in the �uids community has been to done to couple lubrication and

NS theory, there has been a large amount of analogous work in the solid and heat transfer
communities. Most work to date has focused on the development of models that approximate
the displacement or temperature �elds by a simple functional form (e.g. a polynomial) with
respect to a solid structure’s thickness. The complexity of the function is increased until an
optimized solution between the dimensionally reduced and the full three-dimensional models is
obtained [6, 7]. This approach parallels the development of thin structure theories, determining
when and what kind of thin-structure approximation is necessary and giving a measure of the
error introduced by the dimensional reduction. Work more directly analogous to the content
in this paper is found in References [8–10], where coupling between a thin solid structure,
such as a beam or plate, is made with the two- or three-dimensional elasticity equations. The
most relevant work on �uids was performed on falling liquid �lms [11]. The falling �lm was
divided into several zones of �ow, the �rst of which was a NS zone and the last was a
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COUPLED LUBRICATION AND STOKES FLOW FINITE ELEMENTS 131

fully developed zone near the bottom of the �lm. Errors between the NS equations and the
fully- developed �lm were very small.
In this paper, we develop a method for coupling between the thin �lm lubrication equation

and the Stokes equations. We begin by deriving the Reynolds equation in one dimension along
an arbitrary curve and show how it can be coupled naturally to the Stokes equations in a
�nite element formulation. To obtain the error associated with the lubrication approximation,
we test the coupling or ‘stitching,’ on the hydrodynamic journal bearing, which has a known
analytical solution for Stokes �ow. Finally, we insert the lubrication stitch into the �uid-side
dynamics of a model for fully �ooded roll coating to demonstrate the future potential of the
lubrication approximation in coupled �uid-solid physics problems.

2. GOVERNING EQUATIONS AND FORMULATION

We seek to couple a two- or three-dimensional �uid region, whose physics are governed by
the incompressible Stokes momentum and mass conservation equations, to a narrow one- or
two-dimensional region, whose physics can be approximated with lubrication, or Reynolds,
theory. The following are required to apply lubrication theory: (1) as the �uid enters and
travels through the narrow region, its inertia must be negligible, (2) the wall curvature of
the narrow region must be small, and (3) the pressure gradient perpendicular to the direction
of �ow in the narrow region must be negligible. Using the coordinate system depicted in
Figure 1, the momentum balance in the thin region simpli�es to

dP
d�
= �

@2V�
@�2

(1)

@P
@�
=0 (2)

Figure 1. Stokes-lubrication coupling between narrow and non-narrow regions. A two-dimensional,
arbitrarily shaped, non-narrow �uid region is connected to a thin narrow region, represented by
a one-dimensional arc. The Stokes equations govern the �uid physics in the region �St, de�ned
by Cartesian coordinates x and y. A lubrication approximation is made to simplify the governing
physics in the thin-�lm region �Re, de�ned by the coordinates � and � which are tangential and

normal to the direction of �ow, respectively.
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132 M. S. STAY AND V. H. BAROCAS

where P(�) and V (�; �) are the �uid pressure and velocity in the narrow region. The narrow
region coordinates, � and �, are tangential and normal to the direction of �ow and are used
instead of Cartesian coordinates x and y to account for a curved domain. Since we have
assumed a small wall curvature, the form of the momentum balance equations is the same as
if we had stretched the length of the domain and written the balance with Cartesian coordinates
x and y. The narrow region’s height is given by a �lm thickness h(�), which can vary over
the length of the narrow region. Integrating Equation (1) over the �lm thickness (�=0 to
h(�)) and assigning velocities V1 and V2 for the lower and upper boundaries, respectively
(both V1 and V2 can be functions of �, but we have assumed them to be constant for this
paper), yields the velocity �eld for the narrow gap

V (�; �)=
1
2�

dP
d�
(�2 − �h) + 1

2

(
V1 − V2
h

)
�+ V1: (3)

At this point, we do not know the pressure gradient (dP=d�) along the length of narrow
region, but we see clearly that the velocity �eld is quadratic with respect to �. Integrating
across the �lm thickness again to obtain a �ow rate per unit width Q(�) we get

Q=
∫ h(�)

0

(
1
2�

dP
d�

(
�2 − �h)+ 1

2

(
V1 − V2
h

)
�+ V1

)
d�

=− h3

12�
dP
d�
+
(V1 + V2)

2
h (4)

In order to satisfy the mass balance in the thin region, the �ow rate must be constant at every
point � in the �ow path, so we are left with a second order ordinary di�erential equation in
P,

dQ
d�
=
d
d�

(
− h3

12�
dP
d�
+
(V1 + V2)

2
h
)
=0 (5)

known as the steady-state Reynolds equation, where P is the lubrication pressure.
For the non-narrow region of the �uid domain, the Stokes equations for an incompressible

�uid (or the NS equations, as long as assumption (1) from above is true near the transition
region) are given by

∇ · T=0 (6)

∇ · v=0 (7)

where T=−pI + �(∇v +∇vT) is the Cauchy stress tensor, p is the pressure, v is the �uid
velocity �eld, and � is the �uid viscosity. The boundary of the Stokes domain, @�, is decom-
posed into three sections. Sections �1 and �2 represent the two boundaries with the lubrication
domain, and section �0 (which need not be connected) represents the remainder of @�. If
we compare Equation (5) and Equations (6), (7), we notice that there is no explicit coupling
between the governing equations, so the coupling must be performed at the boundaries. The
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goal is to enforce, with minimal error, the mass and momentum balances across the transition
interface. Our approach is to set the integrated �ow rate out of the Stokes region equal to
the lubrication �ow rate while specifying the traction on the Stokes surface in terms of the
lubrication stress �eld. Mathematically this is written as

∫
�∗
n · v dS =−Q(�∗) (8)

n · T|�∗ =
[
nx ny

] [Txx Txy

Tyx Tyy

]
=



−nxP + ny dV�d�
nx
dV�
d�

− nyP



�∗

(9)

where �∗ and �∗ (∗=1 or 2) are the Stokes and lubrication sides, respectively, of the Stokes-
lubrication interface de�ned by � in Figure 1. There are, of course, other possible ways of
performing the coupling—for example, setting the velocity tangential to the stitch boundary
equal to zero and matching normal stresses—but the approach of Equations (8) and (9) is
preferred because it can be implemented naturally with the �nite element method.

2.1. Galerkin formulation

The majority of incompressible �uids problems that contain a coupling between narrow and
non-narrow regions are irregularly shaped, i.e. not logically rectangular or simply mapped,
so the Galerkin �nite element method (GFEM) is highly attractive. The GFEM has been
shown to be highly accurate in solving the NS equations for incompressible liquids and, as
will be seen shortly, is particularly suited for implementing the coupling between narrow and
non-narrow regions. We recognize that the procedure of forming the �nite element weighted
residuals for Stokes �ow is well known (e.g. Reference [12]), but we present it here to show
the coupling between Stokes and lubrication regions. The �rst step is to multiply the Stokes,
continuity, and lubrication equations by separate test functions, wSt, wC, and wRe, and integrate
by parts to form the weighted residuals RSt, RC, and RRe

RSt =
∫
�
(∇ · T) · wSt d�=0

=
∫
@�
wSt · (n · T) dS −

∫
�
∇wSt :T d� (10)

RC =
∫
�
∇ · vwC d�=0 (11)

RRe =
∫ �2

�1

dQ
d�
wRe d�=0

=Q(�2)wRe(�2)−Q(�1)wRe(�1)−
∫ �2

�1
Q
dwRe

d�
d� (12)
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We have replaced �∗ from Equation (8) with �1 and �2 to indicate the lubrication side of the
interface at a thin-�lm region inlet and outlet. By substituting the relations of Equations (8)
and (9) into the boundary terms of the Reynolds and Stokes weighted residuals, respectively,
the �nal residual equations are

RSt =−
∫
�
∇wSt : T d� +

∫
�0
wSt · (n · T) dS

+
∫
�1

((
−nxP + ny dV�d�

)
wStx +

(
nx
dV�
d�

− nyP
)
wSty

)
dS

+
∫
�2

((
−nxP + ny dV�d�

)
wStx +

(
nx
dV�
d�

− nyP
)
wSty

)
dS (13)

RC =
∫
�0

∇ · vwC d� (14)

RRe =−
∫
�2
n · vwRe(�2) dS +

∫
�1
n · vwRe(�) dS

+
∫ �2

�1

(
− h3

12�
dP
d�
+
(V1 + V2)

2
h
)
dwRe

d�
d� (15)

where the integral over �0 is handled by standard techniques based on the boundary conditions.
A pictorial example of the coupling between Stokes and lubrication regions is shown in
Figure 2. A three-node one-dimensional quadratic element interpolates the lubrication pressure,

Figure 2. The coupled Stokes–Reynolds transition element. In the �nite element discretization, a
change from narrow to non-narrow regions is performed with a transition element that connects
the one-dimensional lubrication (left) and two-dimensional Stokes �nite elements (right). In this
example, the Reynolds residual at node A3, on the single quadratic �nite element, is coupled to
the residuals along the Stokes boundary, at nodes B1–B7. Boundary conditions to the lubrication
side of the coupling are supplied by integrating the Stokes velocity �eld over the boundary of
the grey elements to determine the net �ow rate out of, or into, the Stokes region. The result
is used as the inlet, or outlet, �ow rate to the lubrication region. A boundary condition on the
Stokes traction, applied to the boundary of the grey elements, is determined from the lubrication

stress calculated from the pressure at nodes at A1–A3 (see Equations (8) and (9)).
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and a nine-node two-dimensional biquadratic element interpolates the Stokes velocity �eld. The
residual equation associated with node A3 on the lubrication side receives contributions from
integrating the Stokes velocity �eld over the boundary of the gray elements (nodes B1–B7).
Conversely, the Stokes residuals associated with nodes B1–B7 receive contributions from the
calculated lubrication stress, which is dependent on the lubrication pressure at node A1 and the
lubrication velocity over element A. Since the lubrication velocity is de�ned by the lubrication
pressure gradient in Equation (3), pressures at nodes A1–A3 contribute to the coupling. The
coupling strategy is analogous to the solid transition element found in Reference [8]. The fact
that �uid mass �ows through the Stoke-lubrication element, however, means that the liquid
‘transition’ element couples an entire side of the Stokes domain to the thin-�lm region as
opposed to a single �nite element. That is, if Figure 2 were for a solid instead of a �uid
system, only nodes B3–B5 would interact with the reduced-dimension element.

2.2. Examples

2.2.1. Large-gap journal bearing. As mentioned in the introduction, dimensionally reducing
a region of the Stokes domain to a lubricated approximation results in some error from the
full Stokes calculation. The bene�t, of course, is that the problem is easier to solve and
can be done with smaller computational resources (or with greater accuracy given the same
computational resources). In order to assess the error introduced by inserting the lubrication
stitch, a non-trivial test problem is needed. To this end, we apply the lubrication stitch to the
hydrodynamic journal bearing.
A journal bearing system consists of a stationary outer bearing (physically, a load supporting

axle) and an inner rotating journal (a moving axle), which enclose a lubricating �uid—for our
purposes, an incompressible liquid. In practical applications, the gap between the journal and
bearing is small throughout the entire domain, and the entire �uid domain can be treated with
lubrication theory. To demonstrate Stokes–Reynolds coupling, however, we will not restrict
ourselves to small gaps. Figure 3(a) depicts the journal bearing and its subdomains, with a
lubrication stitch inserted from �= �1 to �= �2.
By letting �=RB�, V1 = 0, and V2 =�JRJ we transform the general lubrication

equation (5) to

1
RB

d
d�

(
− h3

12�RB
dP
d�
+
1
2
�JRJh

)
=0 (16)

where the reference surface for determining the gap is the bearing surface, RB and RJ are
the bearing and journal radii, and �J is the rotational speed of the journal. The bearing is
assumed to be stationary for all cases. The resulting Reynolds region �nite element residual is

RRe =
∫ �2

�1

(
− h3

12�RB
dP
d�
+
�JRJ
2

h
)
d�

− 1
RB

∫
�2
n · vwRe(�2) dS + 1

RB

∫
�1
n · vwRe(�1) dS (17)
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Figure 3. Test problems for Stokes-lubrication coupling: (a) the journal bearing is used to quantify
the error associated with introducing the lubrication approximation. The �uid domain is broken
into two sections—one where the incompressible Stokes equations (6) and (7) are valid and a
second, de�ned along the arc length from �1 to �2 where the lubrication equation (5) governs.
In (b), the lubrication approximation is introduced into the fully-�ooded deformable-roll coating
problem (upper rigid roll moving, lower deformable roll stationary). The example demonstrates
the computational speed-ups that can be achieved with the coupled Stokes–Reynolds method.

The Stokes equations are unchanged, but the Stokes �nite element residual with an appropri-
ately transformed boundary integral is

RSt =
∫
�
∇wSt : (−PI+ �(∇v+∇vT)) d� +

∫
�0
wSt(n · T) dS

+
∫
�1

((
−nxP(�2) + ny dV�dr

)
wStx +

(
nx
dV�
dr

− nyP(�1)
)
wSty

)
dS

+
∫
�2

((
−nxP(�2) + ny dV�dr

)
wStx +

(
nx
dV�
dr

− nyP(�1)
)
wSty

)
dS (18)
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For the journal bearing, we varied the o�set C between the journal and the bearing centers,
leading to two di�erent minimum gap thicknesses. The large-gap journal domain was produced
by setting minimum gap thickness to 0:025 cm and the small-gap journal was made with a
minimum gap of 0:005 cm. In both cases, we varied the length of the stitch. For all of the
journal bearing computational experiments, we use a �uid viscosity of �=1:0 Poise, a journal
radius of RJ = 0:25cm, a bearing radius of RB =0:50cm, and a surface velocity on the journal
of VJ =�JRJ = 1:0 cm=s. The �uid density is set to zero, eliminating the inertial terms of the
NS equations. The Stokes �ow problem has a known analytical solution [13].

2.2.2. Roll coater. As a more industrially relevant study, we also solve a �uid–solid problem
based on fully �ooded deformable-roll coating. A description of the deformable-roll coating
process and its uses can be found in Reference [2], along with the governing equations and a
procedure for solving the coupled �uid–solid problem. The key features of the model problem
are shown in Figure 3(b). The nip region–the narrow gap between the two rolls in near
contact—presents a signi�cant computational challenge. A thin liquid �lm forms, bounded by
the counter-clockwise moving rigid upper roll and the stationary but deformable bottom roll.
This �lm is lubricated, but the regions just outside it, on either side, are not. By modeling
the nip region as fully �ooded (i.e. completely immersed in a liquid) it is reasoned that the
nature of the �ow in more complex situations, such as free surfaces that form during �lm
splits, can be better understood. As one can imagine, the problem becomes di�cult to solve
when the liquid �lm becomes so narrow that a moving mesh used to track the liquid domain
becomes distorted and the �nite element codes fails. This breakdown could be avoided if a
lubrication stitch were inserted in the narrow-gap region when the rolls become close.
To demonstrate the potential of the stitch we used the proprietary code GOMA [14] to

solve the fully coupled problem by moving the rigid roll toward the deformable roll. With
each successive run of the code, we stepped the rigid roll closer to the deformable roll, using
the previous run as an initial guess. GOMA was run until the �nite element mesh became
so severely distorted that it could not be stepped any closer to the deformable roll no matter
what the initial guess. At that point, we saved the con�guration of the domain and re-meshed
the liquid side with a lubrication stitch included. In similar fashion to the journal bearing, we
let �=RRR�, V1 =�RRRRR, and V2 = 0 and transformed the general lubrication equation to

RRe =− 1
RRR

∫
�2
n · vwRe(�2) dS + 1

RRR

∫
�1
n · vwRe(�1) dS

+
∫ �2

�1

(
− h3

12�RRR
dP
d�
+
�RRRRR
2

h
)
d� (19)

where RRR and �RR are the radius and angular speed of the rigid roll. The Stokes �nite
element residual becomes

RSt =
∫
�0
wSt · (n · T) dS +

∫
�
∇wSt : (−PI+ �(∇v+∇vT)) d�
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+
∫
�1

((
−nxP(�2) + ny dV�dr

)
wStx +

(
nx
dV�
dr

− nyP(�1)
)
wSty

)
dS

+
∫
�2

((
−nxP(�2) + ny dV�dr

)
wStx +

(
nx
dV�
dr

− nyP(�1)
)
wSty

)
dS: (20)

3. NUMERICAL EXAMPLES

3.1. Journal bearing: large gap (C=0:225 cm)

In Figures 4 and 5 we have plotted the pressure contours and �uid streamtraces of the Stokes
segment of the coupled domain. The pressure contours and streamtraces show the general
features of the �ow �eld—a large recirculation on the wide-gap side whose arms creep toward
the midline of the Stokes domain and a pressure �eld that is antisymmetric with respect to the
same midline. To ascertain the more subtle di�erences between the full-Stokes and coupled
solutions we must probe what happens at the transition between the Stokes and lubrication
zones and the lubrication zone itself.
In the thin-�lm region, de�ned as �1 to �2, we have plotted the stitch pressure from the

solution of Equation (5) and compared it to the full-Stokes results for the journal and bearing
walls. The thin-�lm pressure plots show that the journal and bearing wall pressures are nearly
identical for the entire length of the lubrication domains, even in the long stitch case. As
expected, the lubrication pressure, while still a fairly close match for both the short (�2 −
�1 = 5◦) and long (�2 − �1 = 20◦) stitch cases, becomes worse for a longer stitch. As the
lubrication domain gets larger, the interface between the Stokes and Reynolds regions moves
closer to the arms of the recirculation zone. Since the radial velocity is obviously non-zero
there, the lubrication assumptions break down. As a result, the stitch gets progressively less
accurate. By plotting the radial velocity at the Stokes–Reynolds interfaces versus the full-
Stokes velocity, we see that the radial velocity and the error between the two solutions is
small for the short stitch. For the long stitch, the radial velocity approaches a maximum of
0:15 cm=s which is not trivial compared to the characteristic journal velocity of 1:0 cm=s. This
growing radial velocity con�rms that the local lubrication approximation is inappropriate.
Although not plotted in the either of the �gures, the absolute value of the maximum or

minimum pressure serves as a quick method of quantifying the error between the coupled
Stokes-lubrication and analytical solutions. For the journal o�set of C=0:225cm, the analytical
solution peak pressure is 180:363dyne=cm2. The coupled short-stitch solution produced a peak
pressure of 181:056 dyne=cm2 (0.4% error) while the coupled long-stitch solution results in
a peak pressure of 192:082 dyne=cm2 (6.5% error), demonstrating that even though the short
stitch is much more accurate than the long, both are still fairly successful.

3.2. Journal bearing: small gap (C=0:245 cm)

A second way of increasing the degree to which the thin-�lm region is lubricated occurs by
decreasing the gap between journal and bearing. Figures 6 and 7 are analogous to Figures 4
and 5 and show results for a small (1◦) and large (4◦) lubrication stitch. Stitch lengths were
chosen so that the stitch domains would be geometrically similar to those in the large-gap case.
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Figure 4. The upper plot shows the pressure contours and streamtraces of the large-gap small-stitch
journal bearing system with a lubrication stitch length of 5◦. In the lower-left graph, the lubrication
pressure is plotted against the journal and bearing wall pressures from the full-Stokes solution.
The lower-right graph shows the di�erence between the coupled model and full-Stokes radial
velocities at the Stokes–Reynolds interfaces �1 and �2. The lubrication approximation assumes
that the radial velocity of �uid on the Reynolds side of the Stokes–Reynolds interface is zero,

and so the Stokes-side radial velocities serve as a measure of error.

The contour and streamtrace plots suggest that the �ow �elds compare qualitatively to the
analytical solution and, like the solution for the large-gap case, a recirculation forms with an
antisymmetric pressure �eld. The small-gap journal o�set is C=0:245 cm, and the analytical
solution for the peak pressure is 1874:96dyne=cm2. The coupled short-stitch solution produced
a peak pressure of 1867:59 dyne=cm2 (0.4% error), and the coupled long-stitch solution gives
a peak pressure of 1902:64 dyne=cm2 (1.5% error). Unlike the large-gap case, however, the
extent to which the arms of the recirculation extend toward the domain midline is much
greater, implying that the region over which the stitch is valid will decrease.
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Figure 5. The upper plot shows the pressure contours and streamtraces of the large-gap large-stitch
journal bearing system with a lubrication stitch length of 20◦. As in Figure 4, we compare the
full-Stokes and coupled Reynolds–Stokes narrow region pressures, and plot the radial velocities
at �1 and �2. Even though the radial velocity is approaching a value of 0:15 cm=s, indicating
the lubrication approximation is becoming less valid, the di�erence between the full-Stokes and

coupled Stokes-lubrication solution is small.

3.3. Roll coater with the lubrication approximation

Figure 8 shows, in the upper plot, the �nal domain con�guration to the GOMA solution of
the �uid-solid problem and, in the lower plot, the pressure �eld and �uid streamtraces to the
full-Stokes solution. The upper rigid roll drags �uid through the narrow portion of the �uid
domain and two recirculations form at the inlet and outlet to the nip. The pressure is constant
across the thin-�lm region, which is of small curvature, suggesting that the region is highly
lubricated. The results of the coupled Stokes-lubrication model, outlined in Section 2.2.1 and
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Figure 6. The upper plot includes the pressure contours and streamtraces of the small-gap small-stitch
journal bearing system with a lubrication stitch length of 1◦. As in Figures 4 and 5 we show the
narrow region pressure and Stokes-lubrication interface velocities. A blow-up of the velocity �eld at

the non-narrow to narrow transition is shown in the upper left.

shown in Figure 9, con�rm this. A stitch of length 1:4 cm is inserted from x=−0:7 cm to
x=+0:7 cm which removes the troublesome nip section of the domain—the region the mesh
would become severely strained in the fully coupled GOMA solution. The pressure contours
and streamtraces in Figure 9 closely match those in Figure 8 and the pressure in the lubrication
region is virtually indistinguishable from the pressure along the rigid and deformable roll found
in the full-Stokes solution. A stitch length greater than 1:5 cm intrudes upon the recirculation
zones, where the lubrication approximation breaks down.
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Figure 7. The upper plot includes the pressure contours and streamtraces of the journal bearing
system with a lubrication stitch length of 4◦.

3.4. Roll coater computational performance

In Figure 10, we have plotted a ‘bang-for-the-buck’ plot for the roll coating example problem.
It shows the CPU time and error between the full-Stokes and stitch models for stitch lengths
ranging between 0.1 and 1:4 cm. The di�erence between the maximum pressure of the Stokes
and coupled Stokes-lubrication solutions is used as an error measurement. The maximum
pressure of the full-Stokes solution occurs near the centre of the domain and demonstrates
that the lubrication region can accurately capture the salient traits of the �ow �eld. Figure 10
shows that for a stitch of length 1:2 cm, a three-fold decrease from the full-Stokes solve-
time is achieved, with only 0.2% di�erence in maximum pressure. The 1:2 cm stitch removed
the section of the �uid domain where the large mesh strains would cause the full coupled
�uid-solid solver to fail.
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Figure 8. Pressure contours and �uid streamtraces from the solution of the deformable-roll coater
problem, before making a local lubrication approximation. The coupled �uid–solid system, de-
scribed in Reference [2], is solved with GOMA. The plots indicate that the narrow region, between

the deformable and rigid rolls, is highly lubricated.

4. DISCUSSION

In both the journal bearing and roll coating examples, we have shown that a local reduc-
tion of the governing physics in the narrow region of a coupled narrow/non-narrow domain
can be performed with small, but acceptable, error between the coupled and true solutions.
For the roll coating problem, a relatively small problem in two dimensions, the lubrication
stitch signi�cantly reduced the computational expense—both in memory and CPU time—and
a dramatic increase in performance could be achieved in the extension to three dimensions.
In both of our examples the non-narrow region is modeled with the Stokes equations, but,
an extension to a Navier–Stokes/Reynolds coupling is possible. Since the lubrication theory
restrictions are stronger than the Stokes �ow restrictions, any region suitable for lubrication
theory would necessarily be in the Stokes regime locally.
Solution of our example problems suggests that the implementation of a stitch requires an

understanding of the e�ect of the velocity and pressure �elds from the Stokes domain on
the apparent Reynolds domain, and the distance of their in�uence. Suppose, for example, that
there is a narrow region that meets the basic requirements for lubrication theory - (dh=d�)2�1,
h=R�1, Re��1—adjacent to a region that does not. Scaling arguments based on the entire
length of the Reynolds subdomain, denoted by L, require that the pressure gradient in the �
direction be negligibly small, but dp=d� does not need to be zero at the boundary between the
Stokes and Reynolds regions because of the complex �ow �eld allowed on the Stokes side.
If dp=d� is non-zero at the boundary, the pressure gradient will penetrate into the Reynolds
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Figure 9. Roll coating pressure and streamtraces with a stitch: (a) an example of the coupled
Stokes-lubrication solution to the �uid dynamics of the roll coater—in this example, the lubrication
approximation connecting the two Stokes regions has a length of 1:4 cm; and (b) comparison of the lu-
brication pressure and the rigid and deformable wall pressures. The rigid and deformable wall pressures

are taken from the full-Stokes solution shown in the previous �gure.

domain some small distance �, and the stitch must have a bu�er to capture the entrance
e�ects. The length of the entrance region can be estimated by applying the same scaling
analysis to the Stokes equations as in lubrication theory, except that the � length scale is set
to � rather than L. Assigning a characteristic �-velocity U , a characteristic �-velocity V; and
characteristic pressure P∗, we get the following dimensionless equation:(
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Figure 10. The di�erence between the peak pressure calculated with GOMA and the peak
pressure calculated with the coupled Stokes–Reynolds code is plotted against stitch length. The
CPU solve-time is also plotted against stitch length. The roll coating example demonstrates
that as the lubrication stitch increases, a substantial decrease in the CPU solve-time can be

achieved—with little increase in the solution error.

The continuity equation (23) thus requires that V ∼ Uh=�. Similarly, if we assume for the
moment that �¿h, we can use the last two terms of the � momentum equation (21) and
conclude that P∗ ∼ U��=h2. Substituting into the � momentum equation (22) gives terms with
lead scaling (U�h=�3), (U�=�h), and (U��=h3). Since we are interested in the region where
the (last) pressure term does not dominate, we conclude that � ∼ h, which is also internally
consistent with our analysis of the � momentum equation. We therefore conclude that there
must be an O(h) bu�er at each end of the stitch to prevent pollution by the Stokes domain
solution.
This e�ect is quite clear in our journal bearing results. The gap thickness h may be shown

by simple geometry to be given by h(�)=RB −C cos(�)−
√
(R2J − C sin2(�)) allowing us to

calculate dh=d� (=1=RB dh=d�). Suppose, for example, that we wish to limit dh=d� to 0.1 for
the Reynolds region. The limits are then �= ±13:6◦ for the large gap and �= ±11:9◦ for the
small gap. For the large gap, the 20◦ stitch (�= ± 10◦) is only about 0.7 gap widths away
from the critical value, so it is not surprising that there is signi�cant transverse �ow and loss
in accuracy. For the small gap, even though the 4◦ stitch has roughly the same aspect ratio
as the 20◦ stitch does for the large gap, it is much farther from the critical � value, about
5.4 gap widths away. This result explains why, even though the recirculation extends farther
toward the gap in the small-gap case, the e�ect of it is smaller—the radial velocity for the
4◦ stitch in the small gap is only about one third to one half of that in the 20◦ stitch in the
large gap.
Finally, our example problems were chosen because they fall into a class of steady-state

�uid systems where the existence and location of the lubrication region was known a priori,
but many, if not most, physically interesting problems are not steady, making it di�cult to
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know when and where a lubrication stitch is applicable. A simple example of this would occur
if we applied a force to the journal boundary and calculated its movement in time. Initially,
the journal would sit near the center of the domain and the Stokes equations would be used
to determine the characteristics of the �ow �eld. In response to the applied force, the journal
would more toward the bearing wall, creating a narrow region between the journal and bearing.
If the Reynolds number and curvature (dh=d�) are much less than 1, a lubrication stitch could
be inserted and the coupled Stokes-lubrication model could be solved. The hydrodynamic
pressure would then rise and force the journal back to the domain center, provided the journal
was not carrying too much inertia. As the local domain curvature and Reynolds number
increase, a large mismatch between the stress on the Stokes and lubrication portions of the
stitch interface would arise. The coupled Stokes-lubrication model could be turned o� and
the full-Stokes solution would then be needed again. Therefore, the next generation of stitch
development should be dynamic in nature to handle transient �uid physics.
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